High-frequency self-aligned graphene transistors with transferred gate stacks.
نویسندگان
چکیده
Graphene has attracted enormous attention for radio-frequency transistor applications because of its exceptional high carrier mobility, high carrier saturation velocity, and large critical current density. Herein we report a new approach for the scalable fabrication of high-performance graphene transistors with transferred gate stacks. Specifically, arrays of gate stacks are first patterned on a sacrificial substrate, and then transferred onto arbitrary substrates with graphene on top. A self-aligned process, enabled by the unique structure of the transferred gate stacks, is then used to position precisely the source and drain electrodes with minimized access resistance or parasitic capacitance. This process has therefore enabled scalable fabrication of self-aligned graphene transistors with unprecedented performance including a record-high cutoff frequency up to 427 GHz. Our study defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra-high-frequency circuits.
منابع مشابه
Self-Aligned AlGaN/GaN Transistors for Sub-mm Wave Applications
This thesis describes work done towards realizing self-aligned AlGaN/GaN high electron mobility transistors (HEMTs). Self-aligned transistors are important for improving the frequency of AlGaN/GaN HEMTs by reducing source and drain access resistance. The eventual fabrication of self-aligned transistors required the development of two different technologies that are described in this thesis. Fir...
متن کاملRecord maximum oscillation frequency in C-face epitaxial graphene transistors.
The maximum oscillation frequency (fmax) quantifies the practical upper bound for useful circuit operation. We report here an fmax of 70 GHz in transistors using epitaxial graphene grown on the C-face of SiC. This is a significant improvement over Si-face epitaxial graphene used in the prior high-frequency transistor studies, exemplifying the superior electronics potential of C-face epitaxial g...
متن کاملFrequency Characteristics of Polymer Field-Effect Transistors with Self-Aligned Electrodes Investigated by Impedance Spectroscopy
Solution-based organic field-effect transistors (OFETs) with low parasitic capacitance have been fabricated using a self-aligned method. The self-aligned processes using a cross-linking polymer gate insulator allow fabricating electrically stable polymer OFETs with small overlap area between the source-drain electrodes and the gate electrode, whose frequency characteristics have been investigat...
متن کاملT-gate aligned nanotube radio frequency transistors and circuits with superior performance.
In this paper, we applied self-aligned T-gate design to aligned carbon nanotube array transistors and achieved an extrinsic current-gain cutoff frequency (ft) of 25 GHz, which is the best on-chip performance for nanotube radio frequency (RF) transistors reported to date. Meanwhile, an intrinsic current-gain cutoff frequency up to 102 GHz is obtained, comparable to the best value reported for na...
متن کاملOperation of Graphene Transistors at GHz Frequencies
Top-gated graphene transistors operating at high frequencies (GHz) have been fabricated and their characteristics analyzed. The measured intrinsic current gain shows an ideal 1/f frequency dependence, indicating an FET-like behavior for graphene transistors. The cutoff frequency fT is found to be proportional to the dc transconductance gm of the device, consistent with the relation fT=gm/(2πCG)...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 29 شماره
صفحات -
تاریخ انتشار 2012